Эволю́ция звёзд (звёздная эволюция) в астрономии — изменение со временем физических и наблюдаемых параметров звезды из-за идущих в ней термоядерных реакций, излучения ею энергии и потери массы[1]. Часто говорят об эволюции как о «жизни звезды», начинающейся когда единственным источником энергии звезды становятся ядерные реакции, и заканчивающейся когда реакции прекращаются — у различных звёзд эволюция идет по-разному[2][3][4]. Согласно астрофизическим моделям, срок жизни звезды, в зависимости от начальной массы, продолжается от нескольких миллионов до десятков триллионов лет[5][6], поэтому астрономы прямо наблюдают только очень малый по сравнению с продолжительностью жизни звезды период её эволюции, на протяжении которого эволюционные изменения практически незаметны[7].
Звёзды образуются из холодных разреженных облаков межзвёздного газа, которые сжимаются из-за гравитационной неустойчивости, в процессе сжатия разогреваются настолько, что в их недрах начинаются термоядерные реакции синтеза гелия из водорода[8]. В момент начала термоядерных реакций протозвезда становится звездой главной последовательности (исключение могут составлять субкарлики и коричневые карлики), на которой будет находиться бо́льшую часть своей жизни — Солнце также находится на этой стадии звезды главной последовательности[9].
Дальнейшая эволюция звёзд различается также в зависимости от начальной массы и химического состава (металличности) звезды. Так, звёзды средних масс при эволюции проходят стадии субгигантов, красных гигантов, горизонтальную ветвь, голубую петлю и асимптотическую ветвь. В любом случае, по мере выгорания водорода как внешние, так и внутренние характеристики звёзд меняются, и при достаточной массе в определённый момент в звёздах начинается тройная гелиевая реакция, при которой в них образуется углерод. В более тяжёлых звёздах далее могут синтезироваться ядра более тяжёлых элементов, но в любом случае синтез более тяжёлых ядер химических элементов останавливается на железе, так как синтез более тяжёлых элементов энергетически невыгоден[8].
На конечной стадии эволюции, в зависимости от массы, звезда либо сбрасывает внешнюю оболочку, становясь белым карликом, либо превращается в сверхновую звезду, после взрыва сверхновой остаётся нейтронная звезда или чёрная дыра[8].
В тесных двойных системах на поздних стадиях эволюции, когда звезда, увеличившись в размерах, заполняет свою полость Роша, между звёздами происходит перетекание вещества, которое приводит к изменению параметров звёзд. Из-за этого эволюция звёзд в таких системах отличается от эволюции одиночных звёзд, а её ход зависит также от параметров орбиты и начальных масс звёзд двойной системы[10][11].
С момента открытия закона сохранения энергии встал вопрос об источнике энергии звёзд. Выдвигались различные гипотезы, и одной из наиболее известных была контракционная гипотеза: в ней предполагаемым источником энергии считалось гравитационное сжатие звезды (которое также объясняло видимое разнообразие звёзд). Её поддерживали лорд Кельвин и Герман фон Гельмгольц, но в дальнейшем выяснилось её противоречие: для Солнца подобного источника энергии хватило бы на 107 лет, в то время как возраст Земли, по геологическим и биологическим данным составлял как минимум 109 лет[12][13][14].
Было показано, что при сжатии звезда должна нагреваться, а не остывать, как предполагалось ранее — это позволило увеличить теоретический срок жизни звёзд. В 1880-х годах Джозеф Локьер выдвинул гипотезу, что при высоких плотностях уравнение состояния вещества звезды сильно отклоняется от уравнения состояния идеального газа, её сжатие останавливается, и она начинает остывать и тускнеть — таким образом, звезда проходит путь от красного гиганта к белой звезде типа Сириуса, после чего снова краснеет, но становится более тусклой — сначала жёлтым, а потом красным карликом.
Когда была составлена диаграмма Герцшпрунга — Рассела, то главная последовательность и ветвь гигантов оказались близко совпадающими с эволюционным путём звезды в гипотезе Локьера. Но затем эта гипотеза была опровергнута: выяснилось, что состояние вещества звёзд главной последовательности остаётся всё так же близко к состоянию идеального газа. Тем не менее, на данный момент контракционная гипотеза хорошо объясняет эволюцию протозвёзд, которые действительно излучают за счёт сжатия, пока не перейдут на главную последовательность[13][14].
В 1896 году Анри Беккерель открыл радиоактивность, а в 1903 году Пьер Кюри — выделение тепла радиоактивными элементами. Поэтому Джеймс Джинс выдвинул гипотезу, что звёзды излучают энергию за счёт радиоактивного распада. Эта гипотеза также не могла объяснить большой возраст Солнца, и в дальнейшем Джинс предположил, что в звёздах происходит не радиоактивный распад, а аннигиляция вещества. Хотя гипотеза аннигиляции и давала достаточно большой возможный срок жизни Солнца, она не нашла подтверждения при дальнейшем развитии астрофизики. Однако сама идея о внутриядерном источнике энергии звёзд оказалась верной[13].
В 1906 году Альберт Эйнштейн исходя из созданной им теории относительности открыл эквивалентность массы и энергии. В 1920 году Артур Эддингтон, знакомый с работами Эйнштейна, предположил, что энергия в звёздах выделяется за счёт превращения водорода в гелий: при такой реакции за счёт дефекта массы должно выделяться достаточно энергии для излучения звёзд в течение многих миллионов и даже миллиардов лет[14]. Гипотеза Эддингтона впоследствии подтвердилась: к 1939 году Хансом Бёте, Карлом Вайцзеккером и Чарльзом Критчфильдом независимо друг от друга были предложили два механизма превращения водорода в гелий: протон-протонный цикл и CNO-цикл. В 1941 году Мартин Шварцшильд рассчитал модель Солнца с термоядерным источником энергии, и его результаты подтвердили теорию термоядерного синтеза в недрах звёзд. На данный момент она общепринята, и на ней основываются модели звёздной эволюции[13].
Именно из-за термоядерного синтеза со временем меняется химический состав звёзд и происходят эволюционные изменения[15][16]. Но эти изменения происходят очень медленно, и эволюцию отдельно взятой звезды практически невозможно проследить даже при очень длительных наблюдениях. Лишь в редких случаях, когда звезда находится на очень короткой стадии своей эволюции, возможно заметить систематическое изменение её параметров, например, изменение периода пульсаций у цефеид. Поэтому теория эволюции строится на некоторых косвенных признаках и по наблюдениям множества звёзд, находящихся на разных стадиях эволюции[7].
В звёздах на разных стадиях эволюции проходят различные термоядерные реакции[17].
Так, в недрах звёзд главной последовательности синтезируются ядра гелия из ядер водорода (протонов). Это превращение может идти двумя путями. В протон-протонном цикле идёт последовательное слияние протонов напрямую с превращением 4 протонов в ядро гелия, и этот процесс доминирует при меньших температурах — в ядрах звёзд малой массы. Второй путь — CNO-цикл. В нём углерод, азот и кислород выступают как катализаторы, цикл доминирует при высоких температурах и за счёт этого процесса выделяется бо́льшая часть энергии в массивных звёздах. Мощность энерговыделения на единицу массы этих двух процессов уравнивается при массе звезды примерно 1,5 M⊙ и температуре в центре примерно 18 миллионов K[18][19].
В массивных звёздах на более поздних этапах эволюции синтезируются более тяжёлые элементы: сначала углерод в тройном гелиевом процессе, а в самых тяжёлых звёздах синтезируются и более тяжёлые элементы вплоть до железа — дальнейший нуклеосинтез более тяжёлых элементов не идёт, так как энергетически невыгоден[20]. Тем не менее, звёзды на более поздних этапах эволюции, как правило, становятся ярче, а удельное энерговыделение на единицу массы исходного для синтеза вещества, наоборот, снижается, так как разница в удельной энергии связи становится меньше. Это обуславливает сравнительно малую продолжительность более поздних стадий эволюции по сравнению с длительностью нахождения звезды на главной последовательности: например, длительность нахождения Солнца на главной последовательности оценивается в 12 миллиардов лет, а стадия горения гелия в Солнце продлится только в 110—130 миллионов лет[21][22][23].
Элементы тяжелее железа также образуются в звёздах, но не когда они находятся на главной последовательности, а при особых обстоятельствах: например, при взрывах сверхновых, когда выделяется большое количество энергии — при так называемом взрывном нуклеосинтезе[24][25][26].
Наконец, коричневые карлики, хотя и не являются звёздами в классическом понимании, поддерживают горение дейтерия и горение лёгких элементов — лития, бериллия, бора, которые могут идти при довольно низких температурах и поэтому являются только реакциями синтеза, происходящей в таких маломассивных объектах[27][28][29]. Кроме этого, в самых массивных коричневых карликах могут в течение некоторого времени идти реакции синтеза гелия из водорода. Однако в отличие от настоящих звёзд, горение водорода в них быстро прекращается и никогда не становится единственным источником энергии[30].
Эволюция звезды начинается в гигантском молекулярном облаке, также иногда образно называемом «звёздной колыбелью». Начальная концентрация атомов в нём — около 102 частиц на кубический сантиметр, тогда как межзвёздное пространство в среднем содержит не более 0,1 частицы на кубический сантиметр. Такие облака могут иметь массу в 105—107 M⊙, диаметр — от 50 до 300 световых лет, а температура газа в них составляет 10—30 K[31][32].
При развитии гравитационной неустойчивости облако может начать сжиматься. Неустойчивость может быть вызвана различными факторами, например, столкновением двух облаков, прохождением облака через плотный рукав спиральной галактики или же взрывом сверхновой звезды на достаточно близком расстоянии, ударная волна от которой, распространяющаяся по межзвездному газу, может столкнуться с молекулярным облаком. Кроме того, при столкновениях галактик столкновения газовых облаков, связанных с галактиками, начинают происходить чаще, что объясняет увеличение темпа звездообразования при столкновениях галактик[33].
Для того чтобы гравитационная неустойчивость привела к сжатию молекулярного облака, нужно, чтобы сумма его потенциальной энергии и удвоенной кинетической, в соответствии с теоремой вириала, стала отрицательна. При постоянной плотности облака радиусом модуль потенциальной энергии (сама она отрицательна) растёт пропорционально а сумма значений кинетической энергии всех молекул — пропорционально Следовательно, облако начнёт сжиматься, если его масса больше определённой величины которая при плотности облака молярной массе его газа и температуре равняется[31][34]:
Отсюда следует, что изначально облако будет сжиматься при массе не менее 103 M⊙. По мере сжатия облако будет уплотняться практически без нагрева, так как оно прозрачно для излучения и почти вся выделяемая энергия излучается во внешнее пространство. Это приводит к уменьшению пороговой массы для развития гравитационной неустойчивости, и, как следствие, — сжиматься начнут области меньшей массы и размера — этот процесс называется фрагментацией облака звёздообразования, он объясняет наблюдаемое формирование звёзд в основном группами — в частности, в скоплениях. Кроме того, явление фрагментации объясняет, почему образованные звёзды имеют сравнительно узкий диапазон масс — от 10−1 до 102 M⊙ по порядку величины[31][35].
По мере уплотнения облака оно становится всё менее прозрачным для излучения, например, при массе облака в 1 M⊙ это происходит при его радиусе в 2,5⋅104 R⊙. При этом выделяемая энергия от гравитационного сжатия начинает его разогревать: по теореме вириала половина выделяемой за счёт сжатия энергии тратится на излучение, а другая половина — на нагревание вещества[36]. Принято считать, что с этого момента облако называется протозвездой[35].
Сжатие облака происходит неравномерно, и через некоторое время после начала сжатия в облаке образуется гидростатически равновесное ядро — принято считать, что именно с этого момента облако, а точнее его ядро, является протозвездой[37]. Характеристики ядра практически не зависят от массы облака, масса составляет 0,01 M⊙, радиус — несколько а.е., а температура в центре — 200 K. Аккреция внешних слоёв облака на ядро приводит к росту его массы и температуры, но при температуре в ~2000 K её рост останавливается, так как энергия расходуется на диссоциацию молекул водорода. В некоторый момент гидростатическое равновесие нарушается, и ядро начинает сжиматься. Следующее гидростатически равновесное состояние достигается для более маленького, теперь уже ионизированного ядра туманности с массой ~0,001 M⊙, радиусом около 1 R⊙ и температурой 2⋅104 K. При этом ядро, излучающее в оптическом диапазоне, закрыто от окружающего пространства пылегазовой оболочкой, которая имеет гораздо меньшую температуру и излучает только в инфракрасном диапазоне[37][38][39].
Аккреция внешних слоёв продолжается, а падающее на ядро со скоростью ~15 км/с вещество образует ударную волну. В дальнейшем на ядро выпадает всё вещество оболочки (хотя у массивных звёзд часть вещества может покинуть звезду из-за сильного давления излучения), ионизируется, и в то же время протозвезда становится доступной для наблюдения в видимом диапазоне[39]. До этого момента сжатие внешней оболочки идёт по динамической временной шкале, то есть, её длительность соответствует времени свободного падения вещества, которому не препятствует давление газа[40].
Протозвёзды, у которых уже закончилась аккреция оболочек, иногда выделяются в отдельный тип, называемый звёздами до главной последовательности. Протозвезда, имеющая низкую температуру и высокую светимость, находится в её верхней правой части на Диаграмме Герцшпрунга — Рассела. Пока в звезде не начались термоядерные реакции и она выделяет энергию за счёт гравитационного сжатия, она медленно движется на диаграмме к главной последовательности[37][38][39].
Так как на этой стадии вещество удерживается от сжатия давлением газа, протозвёзды сжимаются гораздо медленнее, чем на предыдущей стадии — в тепловой временной шкале, то есть, за период, за который половина потенциальной гравитационной энергии израсходуется на излучение[40], согласно теореме вириала. У самых массивных звёзд она занимает около 105 лет, а у наименее массивных — порядка 109 лет. Для Солнца стадия сжатия и перехода на главную последовательность продлилась 30 миллионов лет[37][41][42].
В 1961 году Тюсиро Хаяси (Хаяши) показал, что если весь объём звезды занимает конвективная зона, то при медленном сжатии температура её вещества практически не меняется, а светимость падает — это соответствует движению положения звезды вертикально вниз на диаграмме, и такой путь звезды принято называть треком Хаяши. У звёзд с массами в диапазоне от 0,3—0,5 M⊙ (по разным оценкам) до 3 M⊙ в течение сжатия исчезают конвективные слои и в какой-то момент такие звёзды сходят с трека Хаяши, в то время как звёзды с массами менее 0,3—0,5 M⊙ находятся на треке Хаяши на протяжении всего времени сжатия[35][43][44].
После схода с трека Хаяши (для звёзд промежуточной массы) или с самого начала медленного сжатия (для массивных звёзд), звезда перестаёт быть конвективной и при сжатии начинает нагреваться, при этом светимость меняется незначительно, так как уменьшается площадь излучающей поверхности. Это соответствует почти горизонтальному движению влево на диаграмме, и эта часть пути называется треком Хеньи[43][44][45].
В любом случае, в течение сжатия температура в центре звезды возрастает, и в веществе звезды при достаточной её массе начинают протекать термоядерные реакции. На ранних этапах сжатия они производят меньше энергии, чем излучает звезда, и сжатие продолжается, но вместе с тем доля термоядерных реакций в выделении энергии увеличивается. В некоторый момент, если звезда имеет массу больше 0,07—0,08 M⊙, мощность выделения энергии за счёт термоядерных реакций сравнивается со светимостью звезды и сжатие прекращается — этот момент считается окончанием формирования звезды и её перехода на главную последовательность. Если звезда имеет массу менее 0,07—0,08 M⊙, то в ней тоже возможны термоядерные реакции, однако вещество звезды в ядре становится вырожденным раньше, чем прекращается сжатие, поэтому термоядерные реакции никогда не становятся единственным источником энергии. Такие объекты известны как коричневые карлики[8][35][46].
В процессе сжатия также формируются протопланетные диски вокруг звезды, которые впоследствии могут эволюционировать в планетные системы. Образование протопланетного диска происходит из-за того, что облако изначально может иметь некоторый момент импульса, и при уплотнении облака учащаются столкновения частиц, из-за чего вещество не вошедшее в звезду начинает формировать диск вращающийся вокруг звезды в одной плоскости[47].
Когда сжатие заканчивается и термоядерные реакции синтеза гелия из водорода становятся единственным источником энергии, протозвезда становится звездой главной последовательности. Возраст звезды принято отсчитывать именно с этого момента. Звёзды нулевого возраста образуют так называемую нулевую главную последовательность, расположенную в нижней части этой области диаграммы[48][49]. В это время их химический состав сформировавшихся звезд всё ещё близок к составу межзвёздной среды: они состоят в основном из водорода (около 91 %) и гелия (около 9 %), тогда как более тяжёлых элементов — менее 1 %[50][51]. Звёзды главной последовательности имеют широкий диапазон параметров, которые определяются в первую очередь их массой и в меньшей степени металличностью. Так, например, звезда с массой 0,1 M⊙ будет иметь светимость в 0,0002 L⊙, температуру 3000 K и спектральный класс M6, а звезда с массой 18 M⊙ — светимость в 30000 L⊙, температуру 33000 K и спектральный класс O9,5[5]. Также от массы зависит внутреннее строение звёзд: звёзды малых масс полностью конвективны, у звёзд промежуточных масс происходит лучистый перенос в ядре и конвекция во внешних слоях, а у массивных звёзд — конвекция в ядре и лучистый перенос во внешних слоях. Конвекция приводит к относительно быстрому перемешиванию вещества, что выравнивает химический состав конвективного слоя. Это влияет на то, будет ли сохраняться при дальнейшей эволюции однородность слоёв звезды по химическому составу и на её дальнейшую эволюцию[18][52].
Перейдя на главную последовательность, звезда остаётся на ней большую часть времени жизни — около 90 %. Это обусловлено тем, что светимость звёзд на стадии главной последовательности низка по сравнению с другими стадиями, а удельное энерговыделение при синтезе гелия выше, чем при других термоядерных реакциях[22][53][54]. Длительность стадии главной последовательности соответствует ядерной временной шкале для горения водорода, то есть, времени, за которое звезда излучает всю энергию, которая выделяется в реакциях превращения водорода в гелий[40][55]. У самых тяжёлых звёзд, по разным оценкам, она составляет от одного до нескольких миллионов лет[56], а у самых маломассивных — порядка 10 т�