Фонон | |
Нормальные моды колебаний в кристалле. Амплитуда колебаний была увеличена для удобства просмотра; в реальном кристалле, она обычно существенно меньше межатомного расстояния. | |
Состав: | Квазичастица |
---|---|
Классификация: | Фононы в одномерном кристалле с одним атомом в элементарной ячейке, Акустические фононы, Оптические фононы, Тепловые фононы |
Семья: | Бозон[1] |
Группа: | Квант (колебательного движения атомов кристалла) |
Теоретически обоснована: | Игорь Тамм в 1932 году |
Кол-во типов: | 4 |
Спин: | 0 ħ |
Фоно́н — квазичастица, введённая советским учёным Игорем Таммом. Фонон представляет собой квант колебательного движения атомов кристалла.
Концепция фонона оказалась очень плодотворной в физике твёрдого тела. В кристаллических материалах атомы активно взаимодействуют между собой, и рассматривать в них такие термодинамические явления, как колебания отдельных атомов, затруднительно — получаются огромные системы из триллионов связанных между собой линейных дифференциальных уравнений, аналитическое решение которых невозможно. Колебания атомов кристалла заменяются распространением в веществе системы звуковых волн, квантами которых и являются фононы. Фонон принадлежит к числу бозонов[1] и описывается статистикой Бозе–Эйнштейна. Спин фонона принимает значение 0 (в единицах ). Фононы и их взаимодействие с электронами играют фундаментальную роль в современных представлениях о физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Модель кристалла металла можно представить как совокупность гармонически взаимодействующих осцилляторов, причём наибольший вклад в их среднюю энергию дают колебания низких частот, соответствующие упругим волнам, квантами которых и являются фононы.
В простейшем случае одномерного кристалла, состоящего из одинаковых атомов массы , равновесные положения которых определяются вектором решётки:
где . Предположим, что поперечные и продольные смещения атомов независимы. Пусть — одно из таких смещений атома, занимающего узел . В потенциальной энергии смещений нейтральных атомов из положений равновесия можно учитывать только взаимодействия соседних атомов. Тогда потенциальная энергия будет:
Кинетическая энергия выражается через скорости смещений с помощью функции:
Введём циклические условия:
Одномерной решётке соответствует зона Бриллюэна в - пространстве с границами:
Внутри этой зоны располагаются неэквивалентных волновых векторов:
где . От смещений отдельных атомов удобно перейти к новым обобщённым координатам , которые характеризуют коллективные движения атомов, соответствующие определённым значениям . Для этого введём преобразование:
Новые переменные должны удовлетворять условию:
Таким образом, потенциальная
и кинетическая энергия
где
выражаются через новые коллективные переменные и их временные производные. Нас в дальнейшем будет интересовать частота фононных колебаний в виде:
Зная частоту фононов как функцию , можно вычислить фазовую и групповую скорости соответствующих элементарных возбуждений:
Длинноволновые возбуждения при характеризуются величинами:
Эти возбуждения можно рассматривать как упругие волны в среде. Скорость упругих волн (скорость звука) определяется в механике выражением:
где — модуль Юнга, а — одномерная плотность среды. Модуль Юнга определяет отношение силы к вызванной ею относительной деформации . Он равен
Таким образом, акустическая скорость равна величине:
Следовательно, рассматриваемые в пределе возбуждения совпадают с акустическими волнами в упругой среде. Поэтому эти возбуждения называются акустическими фононами.
Тепловая энергия тела равна сумме энергий фононов (тепловых). Распределение фононов (тепловых) по состояниям при тепловом возбуждении в гармоническом приближении подчиняются статистике Больцмана[2].
Когда волновой вектор приближается к границе зоны Бриллюэна ( или ), то фазовая скорость будет равна величине:
а групповая скорость стремится к нулю. Эти элементарные возбуждения в твёрдом теле можно назвать оптическими фононами.
Этот раздел слишком короткий. Пожалуйста, улучшите и дополните его. |
Акустический фонон характеризуется при малых волновых векторах линейным законом дисперсии и параллельным смещением всех атомов в элементарной ячейке. Такой закон дисперсии описывает звуковые колебания решетки (поэтому фонон и называется акустическим). Для трехмерного кристалла общей симметрии существует три ветви акустических фононов. Для кристаллов высокой симметрии эти три ветви можно разделить на две ветви поперечных волн различной поляризации и продольную волну. В центре зоны Бриллюэна (для длинноволновых колебаний) законы дисперсии для акустических фононов линейны.
где ω — частота колебаний, k — волновой вектор, а коэффициенты Si — скорости распространения акустических волн в кристалле, то есть скорости звука .
Оптические фононы существуют только в кристаллах, элементарная ячейка которых содержит два и более атомов. Эти фононы характеризуются при малых волновых векторах такими колебаниями атомов, при которых центр тяжести элементарной ячейки остается неподвижным. Энергия оптических фононов обычно достаточно велика (порядка 500 см−1) и слабо зависит от волнового вектора.
Наряду с электронами, акустические и оптические фононы дают вклад в теплоёмкость кристалла. Для акустических фононов при низких температурах этот вклад, согласно модели Дебая, кубически зависит от температуры.