Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.
Квантовая электродинамика количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются квантовой электродинамикой, относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (эффект Комптона), излучение и поглощение фотонов атомами и более сложными системами, испускание фотонов при рассеянии быстрых электронов во внешних полях (тормозное излучение) и другие процессы взаимодействия электронов, позитронов и фотонов. Меньший успех теории при рассмотрении процессов с участием других частиц обусловлен тем, что в этих процессах, кроме электромагнитных взаимодействий, играют важную роль и другие фундаментальные взаимодействия (сильное и слабое).
Квантовая электродинамика как последовательная квантовая теория поля была создана в 1940-х годах в работах Фейнмана, Швингера, Томонаги, Дайсона. Это была первая перенормируемая теория поля.
Математически, КЭД — это абелева калибровочная теория поля с группой симметрии U(1). Калибровочное поле, которое переносит взаимодействие между заряженными полями спина 1/2, является электромагнитным полем. Лагранжиан КЭД для поля спина 1/2 (электронно-позитронного поля), взаимодействующего с электромагнитным полем, равен сумме лагранжианов электрон-позитронного поля (первый член суммы), фотонного поля (второй член суммы) и слагаемого, описывающего взаимодействие электромагнитного поля с электронно-позитронным полем (излучение фотона электроном и рождение фотоном электронно-позитронных пар) (третий член суммы):
|
где
Операторы электронного и фотонного полей удовлетворяют системе уравнений (уравнения Дирака-Максвелла):[2]
Эти уравнения дополняются калибровочным условием Лоренца:
Основным вычислительным методом квантовой электродинамики является метод возмущений. В нулевом приближении электромагнитным взаимодействием пренебрегают и частицы считаются невзаимодействующими. В первом, втором и т. д. приближениях учитываются однократные, двукратные и т. д. акты взаимодействия между частицами. Вероятность каждого акта взаимодействия пропорциональна заряду частицы . Чем больше актов взаимодействия рассматривается, тем в более высокой степени входит заряд в выражение для амплитуды вероятности процесса.[3] Вычисления в квантовой электродинамике заключаются в нахождении из лагранжиана, описывающего взаимодействие элементарных частиц, эффективных сечений реакций и скоростей распада частиц. Для вычислений по методу возмущений используется метод диаграмм Фейнмана, при помощи которых вычисляются матричные элементы, входящие в выражения для вероятностей переходов.[4]
Дифференциальное и полное сечения рассеяния комптон-эффекта, процесса рассеяния электрона на электроне и позитроне, процессов взаимодействия — квантов с атомами и ядрами, аномальный магнитный момент и лэмбовский сдвиг электрона с высокой точностью совпадают с расчетами квантовой электродинамики.[5][6][7]
Вакуумом в квантовой электродинамике называется состояние, в котором у всех осцилляторов , следовательно энергия каждого осциллятора равна , где — собственная частота осциллятора. Сумма всех мод осцилляторов с частотами от нуля до бесконечности равна бесконечности. На практике этой расходимостью пренебрегают и энергию вакуумного состояния принимают равной нулю. Остается открытым вопрос: не образует ли вакуум гравитационного поля, подобно массе, распределенной с постоянной плотностью? По «правилу обрезания» моды с очень большими частотами исключаются из рассмотрения. Плотность энергии вакуумного состояния . Подставляя значение , где — масса протона, получаем значение плотности массы, эквивалентное этой энергии: грамм на кубический сантиметр пространства. Гравитационные эффекты, соответствующие этой энергии вакуума, не обнаружены.[8] Не удается вычислить энергию вакуума как собственное значение для гамильтониана вакуумного состояния, а при применении методов теории возмущений к расчету вероятности перехода из вакуумного состояния в состояние с фотоном и электронно-позитронной парой получаются расходящиеся интегралы.[9]
При расчете вероятностей процессов в квантовой электродинамике методом возмущений к выражению для амплитуды процесса последовательно добавляются слагаемые вида , где — постоянная тонкой структуры, — число вершин на диаграммах Фейнмана в данном приближении. Ряды вида , являются расходящимися. В опытах данная расходимость не проявляется, поскольку предельная точность вычислений при помощи таких рядов составляет [3]
Требование локальности взаимодействия между частицами в квантовой электродинамике приводит к тому, что интегралы по пространству, описывающие процессы взаимодействия частиц, оказываются расходящимися за счет больших импульсов виртуальных частиц. Это свидетельствует о неприменимости принятых в квантовой электродинамике методов описания взаимодействий на малых расстояниях.[10]