Катодные лучи

Като́дные лучи́, также называемые «электронными пучками» — поток электронов, излучаемый катодом вакуумной трубки.

Описание катодных лучей[ | ]

Катодные лучи состоят из электронов, ускоряемых в вакууме разностью потенциалов между катодом и анодом, т.е. электродами, находящимися соответственно под отрицательным и положительным потенциалом относительно друг друга. Катодные лучи обладают кинетической энергией и способны придавать механическое движение, например, лопастям вертушки. Катодные лучи отклоняются под действием магнитного и/или электрического полей. Катодные лучи способны вызывать свечение люминофоров. Поэтому при нанесении люминофоров на внутреннюю поверхность прозрачной трубки, свечение можно видеть на внешней поверхности трубки. Этот эффект используется в вакуумных электронных приборах, например в электронно-лучевых трубках, электронных микроскопах, рентгеновских трубках и радиолампах.

Кинетическая энергия E катодных лучей вблизи анода (если между катодом и анодом отсутствуют какие-либо преграды) равна произведению заряда электрона e на межэлектродную разность потенциалов U: Е = eU. Например, если разность потенциалов равна 12 кВ, электроны приобретают энергию 12 килоэлектронвольт (кэВ).

Для возникновения катодных лучей необходим выход электронов с катода в межэлектродное пространство, который называется электронной эмиссией. Она может происходить в результате нагрева катода (термоэлектронная эмиссия), его освещения (фотоэлектронная эмиссия), электронного удара (вторичная электронная эмиссия) и т.д.

Хотя электроны катодных лучей быстро теряют энергию в плотном веществе, но сквозь достаточно тонкую стенку (доли мм) они могут проникать из вакуумной трубки в воздух, если ускоряющий потенциал достаточно высок (десятки киловольт). Пробег в воздухе катодных лучей с энергиями в десятки килоэлектронвольт ограничен несколькими сантиметрами.

В вакууме катодные лучи не видны, однако при взаимодействии с веществом они вызывают его радиолюминесценцию ввиду возбуждения атомных оболочек и высвечивания энергии атомом посредством фотонов, в том числе видимого света. В частности, при наличии остаточного газа в вакуумной трубке можно наблюдать его свечение (см. розовое свечение в трубке на фотографии ниже). Радиолюминесценция наблюдается также у вещества анода или других объектов, попадающих под пучок (например, стекла в торце трубки Крукса), и у воздуха при выводе катодных лучей за пределы трубки.

Катодные лучи используются в электронно-лучевых технологиях (англ.)[1] , например, созданный для напыления плёночных покрытий универсальный электронно-лучевой испаритель УЭЛИ-1[2], а также в электронной литографии. Электронно-лучевые технологии более экологичны, менее энергоёмки и практически безотходны[3]. Применяются также в 3D-принтерах (Electron-beam melting, EBM, Послойный синтез электронным пучком).

См. также[ | ]

Примечания[ | ]

Литература[ | ]

Ссылки[ | ]