Во́лны де Бро́йля — волны вероятности (или волны амплитуды вероятности[1]), определяющие плотность вероятности обнаружения объекта в заданной точке конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.
Идея о волнах, связанных не только с квантами света, но и массивными частицами, предложена Луи де Бройлем в 1923–1924 годах[2] и называется гипотезой де Бройля. Хотя трактовка квадрата модуля амплитуды волны как плотности вероятности в конфигурационном пространстве принадлежит Максу Борну[3], по традиции и в знак признания заслуг французского физика говорят о волнах де Бройля.
Идея волн де Бройля полезна для приблизительных выводах о масштабах проявления волновых свойств частиц, но не отражает всей физической реальности и потому не лежит в основе математического аппарата квантовой механики. Вместо дебройлевских волн эту роль в квантовой механике выполняет волновая функция, а в квантовой теории поля — полевые операторы.
Физика атомов, молекул и их коллективов, в частности кристаллов, а также атомных ядер и элементарных частиц изучается в квантовой механике. Квантовые эффекты являются существенными, если характерное значение действия (произведение характерной энергии на характерное время или характерного импульса на характерное расстояние) становится сравнимым с (постоянная Планка). Если частицы движутся со скоростями много меньше, чем скорость света в вакууме , то применяется нерелятивистская квантовая механика; при скоростях близких к — релятивистская квантовая механика.
В основе квантовой механики лежат представления Планка о дискретном характере изменения энергии атомов, Эйнштейна о фотонах, данные о квантованности некоторых физических величин (например, импульса и энергии), характеризующих в определённых условиях состояния частиц микромира. В то же время было твёрдо установлено, что свет проявляет свойства не только потока частиц, но и волны, то есть обладает корпускулярно-волновым дуализмом.
Де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом . Все частицы, имеющие конечный импульс , обладают волновыми свойствами, в частности, подвержены интерференции и дифракции[4].
Волны де Бройля имеют специфическую природу, не имеющую аналогии среди волн, изучаемых в классической физике: квадрат модуля амплитуды волны де Бройля в данной точке является мерой вероятности того, что частица обнаруживается в этой точке. Дифракционные картины, которые наблюдаются в опытах, являются проявлением статистической закономерности, согласно которой частицы попадают в определённые места в приёмниках — туда, где интенсивность волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации, квадрат модуля амплитуды «волны вероятности» обращается в нуль.
Формула де Бройля устанавливает зависимость длины волны , связанной с движущейся частицей вещества, от импульса частицы, а энергии — от частоты , в виде релятивистски инвариантных соотношений:
где — постоянная Планка.
Другой вид формул де Бройля:
где — волновой вектор, модуль которого — волновое число — есть число длин волн, укладывающихся на единицах длины, — циклическая частота, — единичный вектор в направлении распространения волны, Дж·с.
У частиц с дорелятивистскими энергиями, движущимися со скоростью (скорости света), для импульса справедлива формула (где — масса частицы), для кинетической энергии — формула . Тогда длина волны де Бройля
В частности, для электрона, который ускорился в электрическом поле с разностью потенциалов вольт
Для частиц в ультрарелятивистском случае, когда их скорость близка к скорости света, , длины волны равна [5].
В четырёхмерном виде формулы де Бройля связывают четырёхвектор энергии-импульса с четырёхмерным волновым вектором и имеют вид[6]:
Энергия и импульс любого материального объекта связаны соотношением:
Аналогичным соотношением связаны частота и волновой вектор[6]:
Фазовая скорость волн де Бройля свободной частицы
Последние соотношения — нерелятивистское приближение. Зависимость фазовой скорости дебройлевских волн от длины волны указывает на то, что эти волны испытывают дисперсию. Фазовая скорость волны де Бройля хотя и больше скорости света, но относится к числу величин, принципиально неспособных переносить информацию (является чисто математическим объектом).
Групповая скорость волны де Бройля равна скорости частицы :
Гипотеза де Бройля объясняет ряд экспериментов, необъяснимых в рамках классической физики[7]:
Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение волновых свойств оказывается невозможным. Впрочем, наблюдать квантовые эффекты можно и в макроскопическом масштабе, особенно ярким примером этому служат сверхпроводимость и сверхтекучесть.
Для улучшения этой статьи желательно:
|