Чикшулуб | |
---|---|
исп. Chicxulub | |
![]() Радарная топографическая съёмка показывает наличие кратера диаметром 180 км | |
Характеристики | |
Диаметр | 180 ± 1 км |
Тип | Ударный |
Наибольшая глубина | 20 000 м |
Средняя глубина | 17 000 м |
Расположение | |
21°24′00″ с. ш. 89°31′00″ з. д.HGЯO | |
Страна | |
Штат | Юкатан |
![]() |
Чикшулу́б (исп. и юкатек. Chicxulub [tʃikʃu'lub] — «демон клещей», название указывает на издревле высокую распространённость паразитиформных клещей в этой местности; иногда ошибочно транслитерируется как Чиксулуб) — древний ударный кратер диаметром около 180 км[2] и изначальной глубиной до 17—20 км[3], находящийся на полуострове Юкатан, и входящий в список крупнейших кратеров на Земле. Предполагается, что кратер образовался около 66,5 млн лет назад[4] в конце мелового периода в результате удара астероида диаметром около 10 км. Энергия удара оценивается в 5⋅1023 джоулей или в 100 тератонн в тротиловом эквиваленте[5] (для сравнения, крупнейшее термоядерное устройство имело мощность порядка 0,00005 тератонны, что в 2 миллиона раз меньше).
Из-за больших размеров кратера его существование невозможно было определить на глаз. Учёные открыли его только в 1978 году, что произошло совершенно случайно при проведении геофизических исследований на дне Мексиканского залива.
В ходе исследований была обнаружена большая подводная дуга протяжённостью около 70 км, имеющая форму полукольца. По данным гравитационного поля учёные нашли продолжение этой дуги на суше, на северо-западе полуострова Юкатан. Сомкнувшись, дуги формируют окружность, диаметр которой составляет приблизительно 180 км.
Ударное происхождение кратера было доказано по гравитационной аномалии внутри кольцеобразной структуры, а также по присутствию горных пород, характерных только для ударно-взрывного породообразования, этот вывод подтвердили также химические исследования грунтов и детальная космическая съёмка местности.
Астероид упал под очень крутым углом, около 60° к горизонту, двигаясь с северо-востока. Это самый опасный сценарий падения, так как в результате в атмосферу попало максимальное количество пыли (если бы он упал на Землю под углом в 15°, количество выброшенной пыли, углекислого газа и соединений серы было бы примерно в три раза меньше, а если бы упал вертикально — на порядок меньше)[6]. Подобный удар должен был вызвать цунами высотой 50—100 метров, ушедшие далеко вглубь материков. Прошедшая по поверхности Земли высокотемпературная ударная волна и обратное падение выброшенных в ближний космос (более 100 км) пород, приземлявшихся за тысячи километров от места удара, вызвали лесные пожары по всему миру, в результате которых произошёл выброс большого количества сажи и угарного газа в атмосферу. Поднятые частицы пыли и сажи вызвали изменения климата, подобные ядерной зиме, так что поверхность Земли несколько лет была закрыта от прямых солнечных лучей пылевым облаком. С помощью компьютерного моделирования учёные показали, что в воздух было выброшено около 15 трлн тонн пепла и сажи и днём на Земле было темно, как лунной ночью. В результате нехватки света у растений замедлился[7] или на 1—2 года был ингибирован[8] фотосинтез, что могло привести к уменьшению концентрации кислорода в атмосфере (на время, пока Земля была закрыта от поступления солнечного света). Температура на континентах упала на 28 °C, в океанах — на 11 °C. Исчезновение фитопланктона, важнейшего элемента пищевой цепи в океане, привело к вымиранию зоопланктона и других морских животных[8]. В зависимости от времени пребывания в стратосфере сульфатных аэрозолей, глобальная годовая средняя температура приземного воздуха была ниже 3 °C до 16 лет, уменьшившись на 26 °C[9].
Кроме того, падение астероида, как предполагается[источник не указан 721 день], вызвало мощную сейсмическую волну, несколько раз обогнувшую земной шар и вызвавшую излияния лавы в противоположной точке поверхности Земли (Деканские траппы).
По результатам подводного бурения в центральной части кратера Чикшулуб, проведённого в 2016 году в ходе рейса 364[10] Международной программы изучения океана (IODP)[en], выяснилось, что залегающий между толщей зювита[en] или импактной брекчии и вышележащим палеоценовым пелагическим известняком 76-сантиметровый переходный слой, включая верхнюю часть со следами ползания и рытья[en], сформировался менее, чем за 6 лет после падения астероида[11][12].
В 2019 году учёные описали первые сутки на Земле после падения гигантского астероида. В течение нескольких минут после удара поднятая горная порода рухнула наружу, образуя пиковое кольцо[en], покрытое расплавленной породой. В течение десятков минут пиковое кольцо было покрыто примерно 40-метровым слоем брекчированного ударного расплава и крупнозернистого суевита, в том числе обломочными горными породами, возможно, образованными взаимодействием с расплавленной магмой во время океанического подъёма. В течение часа на вершине пикового кольца образовался гребень из слоя суевита толщиной 10 м с повышенной округлостью и сортировкой частиц. В течение нескольких часов в результате осаждения[en] и сейшей (стоячих волн), в затопленном кратере образовался окаймляющий отсортированный слой суевита толщиной 80 м. Менее чем через сутки отражённое цунами в виде волны обода достигло кратера, в результате чего образовалась прослойка из мелкозернистого песчано-мелкого гравия, обогащённая полициклическими ароматическими углеводородами и фрагментами угля, образовавшегося во время лесных пожаров[13]. В породах, отложившихся непосредственно после взрыва, обнаружены следы присутствия как аэробных, так и анаэробных бактерий[14].
Приблизительное совпадение по времени столкновения с массовым вымиранием на границе мезозоя и кайнозоя позволило предположить физику Луису Альваресу и его сыну геологу Уолтеру Альваресу, что именно это событие вызвало гибель динозавров. Одним из главных свидетельств метеоритной гипотезы является тонкий слой глины, повсеместно соответствующий границе геологических периодов. В конце 1970-х годов Альваресы и коллеги опубликовали работу[15], свидетельствующую об аномальной концентрации иридия в этом слое, в 15 раз превышающей номинальную. Предполагается, что этот иридий имеет внеземное происхождение. В статье 1980 года они привели измерения концентраций иридия в Италии, Дании и Новой Зеландии, превышающих номинальную в 30, 160 и 20 раз соответственно. Также, в этой статье уточнены возможные параметры астероида и последствия его столкновения с Землёй[16][17].
Кроме того, в пограничном слое найдены частицы ударно-преобразованного кварца[en] и тектиты[18] (частички стекла, которые формируются только при астероидных ударах и ядерных взрывах[19]), а также обломки горных пород, наибольшее содержание которых на мел-палеогеновой границе обнаружено в районе Карибского бассейна (как раз там, где находится полуостров Юкатан)[20].
Гипотеза Альваресов получила поддержку части научного сообщества, но в течение 30 лет выдвигалось много альтернативных (подробнее см. в статье Мел-палеогеновое вымирание)[21][22].
К началу 2010-х годов были получены и другие доказательства, в том числе, результаты компьютерного моделирования показали, что такие падения имели долговременные катастрофические последствия для биосферы. После этого данная гипотеза стала преобладающей[23].