Теория колебаний

Теория колебанийтеория, рассматривающая всевозможные колебания, абстрагируясь от их физической природы. Для этого используется аппарат дифференциального исчисления.

Гармонические колебания

Гармонические колебания — это такие колебания, при которых колеблющаяся величина (например, отклонения маятника) изменяется со временем по закону синуса или косинуса:

Гармонические колебания с затуханием

Гармонические колебания с затуханием — это такие колебания, при которых колеблющаяся величина (например, отклонения маятника) изменяется со временем, как произведение синуса (косинуса) на убывающую экспоненту.

Параметрические колебания

Параметрические колебания происходят когда один из параметров системы (коэффициент дифференциального уравнения колебаний) изменяется периодически. Пример — качели (маятник) с изменяемой длиной.

Негармонические колебания

Как установил в 1822 году Фурье, любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в ряд Фурье. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание — первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами — первым, вторым и т.д.[1]

См. также

Примечания

  1. § 16. Резонансные явления при действии негармонической периодической силы. // Элементарный учебник физики / Под ред. Г.С. Ландсберга. — 13-е изд. — М.: ФИЗМАТЛИТ, 2003. — Т. 3. Колебания и волны. Оптика. Атомная и ядерная физика. — С. 41—44.

Литература